مجلة الصحراء
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.


كل مايخص ( التعليم. الترفيه. البرامج .شروحات .بحوث . ....الخ)
 
الرئيسيةالبوابةأحدث الصورالتسجيلدخول
نتشرف بوجودكم معنا بالمنتدى وأسعدنا خبر انضمامكم إلى اسرتنا المتواضعه نأمل من الله أن تنشروا ابداعاتكم في هذا المنتدى فأهـــــــــلاً وسهـــــــــــــــلاً بكم ونكرر الترحيب بكم وتقبلوا خالص شكري وتقديري

 

 ملخص عام في الرياضيات للسنة الرابعة متوسط

اذهب الى الأسفل 
كاتب الموضوعرسالة
abdelhamed
Admin
Admin
abdelhamed


عدد المساهمات : 205
تاريخ التسجيل : 31/03/2011
العمر : 27
الموقع : الجزائر /ادرار/ اسبع

ملخص عام في الرياضيات للسنة الرابعة متوسط  Empty
مُساهمةموضوع: ملخص عام في الرياضيات للسنة الرابعة متوسط    ملخص عام في الرياضيات للسنة الرابعة متوسط  Icon_minitime1الإثنين أكتوبر 31, 2011 5:34 pm



• العددان الأوليان فيما بينهما هما العددان قاسمهما المشترك الأكبر يساوي 1 أي 1 = PGCD .
• الكسر الغير قابل للاختزال هو الكسر بسطه ومقامه أوليان فيما بينهما .
• لإيجاد القاسم المشترك الأكبر نتبع أحد الطرق التالية:
1. نبحث عن جميع القواسم المشتركة ونأخذ أكبرها .
2. عملية الطرح المتتالية .
3. القسمة الإقليدية .



• حل المعادلة حيث عدد طبيعي :
1.إذا كان فإن للمعادلة حلين مختلقين هما : و .
إ 2. اذا كان فإن للمعادلة حلا واحد هو : .
إ 3. اذا كان فإن المعادلة ليس لها حل .

• خــــــواص :
 .
 .
 .


• مـــلاحظات :
 .
 .

• لجعل مقام النسبة عددا ناطقا نضرب كلا من البسط المقام في المرافق أي :نضرب و قي العدد











 .
 .
 .



• معادلة من الدرجة الأولى ذات مجهول واحد .
• حل المعادلة من الدرجة الأولى ذات مجهول واحد هو إيجاد مجموعة حلولها أي الأعداد التي تحقق المساواة.
• لحل المسألة يجب :
1. قراءة نص المسألة وفهمها وتحديد المعطيات .
2. اختيار المجهول .
3. ترجمة المعطيات وكتابتها في صيغة المعادلة .
4. القيام بحل المعادلة .




• كل عبارة من الشكل : ، ، ، تسمى متراجحات من الدرجة الأولى بمجهول واحد.
• حل المرابحة من الدرجة الأولى بمجهول واحد هو إيجاد كل القيم الممكنة للمجهول حتى تكون المتباينة
الصحيحة





• كل دالة تكتب على شكل : تسمى دالة خطية وتمثيلها البياني عبارة عن خط مستقيم يمر بالمبدأ.
• كل دالة تكتب على شكل : تسمى دالة تآلفية وتمثيلها البياني عبارة عن خط مستقيم لا يمر بالمبدأ.
• النسب المئوية :
 حساب معناه : .
 زيادة بـ معناه : .
 انخفاض بـ معناه : .









• جملة معادلتين من الدرجة الأولى بمجهولين و هي جملة من الشكل:
• حل جملة معادلتين من الدرجة الأولى بمجهولين و هو إيجاد الثنائية التي تحقق المعادلتين في آن واحد.
• لحل الجملة جبريا نتبع أحد الطرق:
 طريقة التعويض.
 طريقة الجمع.
 طريقة الجمع و التعويض.

• يمكن حل الجملة بيانيا وذلك بإيجاد نقطة تقاطع المستقيمين (إحداثياتها ).




• جيب تمام وجيب وظل زاوية حادة :
 . أي المقابل على المجاور.
 . أي المقابل على الوتر.
 .أي المجاور على الوتر.

• خواص :
 .
 .
 مثلث قائم في فإن. (خاصية فيثاغورس).




مستقيمان متقاطعان في النقطة A






• إذا كان ( BC) // ( MN) فإن : = =
• إذا كان = فإن ( BC ) // ( MN) .






المحيط ( )
المساحة ( )
ملاحظة
المربع

طول ضلع المربع

المستطيل

طول و عرض المستطيل

المثلث

قاعدة و ارتفاع المثلث

شبه المنحرف
القاعدة الكبرى
القاعدة الصغرى

القرص

نصف القطر




الحجم ( )
المساحة ( )
ملاحظة
المكعب

طول ضلع المكعب

متوازي المستطيلات

محيط القاعدة

الموشور القائم

مساحة القاعدة

الكرة


القرص

نصف القطر

الهرم

المخروط



• في معلم، نعتبر النقطتين و
 إحداثيات شعاع: .
 إحداثيات منتصف قطعة : منتصف القطعة يعني : .
 طول قطعة مستقيم :












• التكرار المجمع المتزايد : في سلسلة إحصائية مرتبة ترتيبا تصاعديا، التكرار المجمع المتزايد لقيمة يحصل
عليه بجمع تكرار هذه القيمة وتكرار القيم السابقة لها.

• التكرار المجمع المتناقص: في سلسلة إحصائية مرتبة ترتيبا تصاعديا، التكرار المجمع المتناقص لقيمة يحصل عليه بجمع تكرار هذه القيمة وتكرار القيم الأكبر منها.


• التكرار النسبي المجمع المتزايد والمتناقص:
 التكرار النسبي المجمع المتزايد = التكرار المجمع المتزايد على التكرار الكلي .
 التكرار النسبي المجمع المتناقص = التكرار المجمع المتناقص على التكرار الكلي .

• الوسط الحسابي لسلسلة :
 الوسط الحسابي لسلسلة إحصائية هو مجموع قيم هذه السلسلة على عدد قيمها.
 الوسط الحسابي المتوازن لسلسلة إحصائية هو مجموع جداءات قيمها بتكراراتها على مجموع
معاملات التكرارات.

• الوسيط :
 إذا كان عدد قيم السلسلة فردي، الوسيط هو القيمة التي تتوسط السلسلة بعد ترتيبها.
 إذا كان عدد قيم السلسلة زوجي، الوسيط هو المتوسط الحسابي للقيمتين اللتان تقعان في الرتبتان :
و حيث عدد قيم السلسلة.
 إذا كانت السلسلة مجمعة في فئات نبحث عن الفئة التي تنتمي إليها القيمة الوسطية.

• المدى: مدى سلسلة إحصائية هو الفرق بين أكبر قيمة و أصغر قيمة لها .

بالتوفيق للجميع الشكر لمدير المنتدى
abdelhamed
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://adrar01.1forum.biz
 
ملخص عام في الرياضيات للسنة الرابعة متوسط
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» ملخص دروس الجغرافيا لسنة الرابعة متوسط:
»  تطبيقات للسنة الرابعة في مادة اللغة العربية
» ملخص السنة الثالثة متوسط
» 11حكمة الرابعة
» ملخص دروس التاريخ

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجلة الصحراء :: المرحلة المتوسط :: السنة الرابعة متوسط-
انتقل الى: